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Before we can talk intelligently about different algorithmic paradigms, we need 

to talk about different classes of problems.  

When computers first became widely available, people all over the world started

to create algorithms to solve computational problems.  It was soon recognized 

that the problems they were working on fell into two loose categories: ones that 

were easy to solve with fast algorithms, and ones for which it seemed to be 

impossible to find any efficient algorithm at all.

Researchers looked for some way to formalize these concepts.  The concept of 

computational complexity was applied, and it turned out that the “easy” 

problems can all be solved in polynomial time – ie they have algorithms that run

in O( ) time for some constant k.  None of the hard problems have polynomial 

time algorithms at all, even for very large values of k.

The study of the difficulty of problems experienced an enormous breakthrough 

in the early 1970’s.  Cook and Levin, working independently and virtually 

simultaneously, proved a theorem that revolutionized our understanding of the 

relationship between easy problems and hard problems, and also provided us 

with an immensely powerful tool for identifying computationally hard 

problems.  But we need to work up to that ...

Definition:  a problem X is a decision problem if 

                         - the answer to any instance of X is either Yes or No

                         - the answer to any instance of X is completely determined by the 

details of the instance

For example, let X = "Does the set S contain the value 3?"  where S is a well-



defined set such as {1, 10, 7, 3, 8}.  X is a decision problem.

Another example:  let X = "Does program P enter an infinite loop when the input

is I?".  This is the well-known Halting Problem, and it is a decision problem 

(even though we know there is no algorithm that can solve it for all possible 

programs and inputs).

Another example:  let X = "Will this coin land Heads-up the next time it is tossed

after this question is asked?".  Here the answer is either Yes or No, but the 

answer is not determined by the details of the instance - tossing the coin is a 

random event and its outcome cannot be predicted with 100% accuracy (unless 

the coin is the same on both sides, or unless the universe is completely 

deterministic).  In this case, X is not a decision problem.

Definition: The class P is the set of all decision problems that can be solved (i.e. 

the complete details of the solution, if there is one, can be found) using a "real" 

computer in O( ) time, where k is constant for each problem.

For example, the problem "Given a graph on n vertices, are there three vertices 

that are all mutually adjacent?" can be solved by an algorithm that examines 

each of the  possible solutions.  Since such an algorithm clearly runs in O( )

time, this problem is in the class P.

Definition: The class NP:  This class is a bit more complex than P.  First, we 

distinguish between solving a problem - actually finding the answer - and 

verifying a solution - checking the details to make sure they are correct.  For 

example, if the problem is "Given a set of integers, is the number 17 in the set?" 

the answer might be "Yes, it is in position 5 in the set".  To verify this we would 

check the appropriate value to see if it really is 17.



Second, we imagine a type of computer, called a Non-Deterministic Turing 

Machine (this is where the N in NP comes from) which has the magic ability to 

guess the right answer to any decision problem, and which will provide us with 

the details if the answer is Yes.  Once the NDTM has performed this magic trick,

it relapses back into being a normal computer.

Now we can define NP.  NP is the set of all decision problems that can be solved

by a NDTM which verifies all Yes answers in O( ) time, where k is constant for

each problem.

In other words, NP is the set of all decision problems for which if someone tells 

you the answer, if the answer is No you don't have to do anything, but if the 

answer is Yes and they give you the details of the answer, you can verify the 

correctness of that answer in polynomial time.

The first response when one hears about the class NP is often "What is the point 

of talking about problems that are solved on imaginary magical computers?"

We'll answer that question in two steps.  First, it is important to see that P is 

contained in NP.  If we have an algorithm that correctly solves a problem and 

provides details of the solution, then we could use that same algorithm to verify 

the correctness of the Yes/No solution "guessed" by an NDTM.

Second, it fairly quickly became apparent that most of those “really hard” 

problems I have alluded to – the ones that nobody could find good algorithms 

for – actually do have the property that “Yes” answers can be verified quite 

easily.  So the NDTM is a useful conceptual type of computer for discussing the 

solution of these problems.

Remember that the goal of this line of research was to find a practical way to 

distinguish between easy and hard problems.  So far all we have is an imaginary

magical computer – not very useful.  But stay with me – this all leads to a very 



practical and essential tool in modern computer science.

The question to be addressed is, are there any problems in NP that are not in P?

 In other words, are there any problems that can be verified using an NDTM 

that cannot be solved using a "real" computer?  It would seem that there 

absolutely must be some - after all, the NDTM can magically guess right 

answers to everything, and all it has to do is verify the Yes answers.  

If there are no such problems, then the two classes P and NP are equal – which 

virtually nobody believes – because if P = NP then real computers are just as 

powerful as magic computers.

To address the problem "Does P = NP?" people started trying to find the most 

difficult problems in NP - these are surely the best candidates for problems that 

in NP but not in P - and by the same token, if we can prove that the most 

difficult problems in NP are also in P, then P = NP.



But how can we identify the hardest problems in NP?  Our measure of problem 

difficulty so far has been the computational complexity of the best algorithm for 

solving the problem ... but for the problems we are interested in, we have no 

idea what the best algorithm is.  We are in the uncomfortable position of trying 

to compare the difficulty of problems that we don't know how to solve.

It turns out we can do this in a clever way.  We imagine two problems X and Y.

 We would like to show that X is "easier" than Y (or, more precisely, that X is 

"not harder" than Y).  We do this indirectly by showing that IF we could find an 

efficient algorithm for Y, this would immediately give us an efficient algorithm 

for X. 

To show this relationship between X and Y, we demonstrate that any instance of

X (i.e. any specific set of values or objects that X applies to) can be transformed 

in polynomial time into an instance of Y (i.e. a specific set of values or objects 

that Y applies to) in an answer-preserving way.  That is, if the answer to X on 

that specific set of values is YES, then the answer to Y on the transformed set of 

values is also YES (and similarly for NO).

Here's a simple example:  

X:  Given a set S of n integers, does S contain the value 4?

Y:  Given a set S of n integers, and a specific integer k, does S contain the value 

k?

Obviously, both of these problems are so simple that we can immediately see 

good algorithms for solving them.  Ignore that for the moment - we are focusing

on the relationship between the problems.

Suppose we are given an instance of X (a specific set of integers), and suppose 

we have no idea how to solve it.  We ask "If we knew how to solve Y, how could 

we use that knowledge to solve X?"   



Well, if we know how to solve Y for any set S and any integer k, we can create 

an algorithm solve_Y(S,k) for this problem.  Then we could create an algorithm 

for X like this:

        def solve_X(S):

            return solve_Y(S,4)

This algorithm for problem X adds virtually nothing to the time requirement 

(putting it formally, the instance of X is transformed into an instance of Y in 

constant time, simply by assigning k the value 4), and it is answer-preserving: 

the call to solve_Y() returns "Yes" iff the correct answer to the instance of X is 

"Yes".

Thus we can say that if we could solve Y efficiently, then we could also solve X 

efficiently.

It is also possible to turn this around: if we could solve X efficiently, we could 

also solve Y.  That is, any instance of Y (search for k) can be easily transformed 

into an instance of X (search for 4).  In class we discussed methods for doing this

– it’s a beneficial exercise which I recommend for anyone who was not in class 

when we discussed this.

Here's another, slightly more complex example:

X:  Given a set of n integers, are there more positive than negative integers in the

set?        (NB:  X is a decision problem, and it is in NP)

Y:  Given a set of n integers, is the sum of the set positive?        (Y is also a 

decision problem, and Y is also in NP)

(Once again, it is obvious that we can solve both of these problems easily.  I have

chosen simple problems for these examples so that we can focus on the 

transformation process.)



I posed this as an exercise in class – if you have not yet done so, spend some 

time thinking about this before you read on ...

Solving X requires counting, but solving Y involves adding ... the key insight is 

that counting is equivalent to adding 1's.  So if we transform the instance of X 

into an instance of Y by replacing every positive integer by 1, and every negative

integer by -1, then solving Y on the transformed set will give us a YES answer if 

and only if the answer to X on the original set is YES.  So our transformation is 

answer-preserving, as required ... but is it a polynomial-time transformation?

 Yes it is, because all we need to do is make a single, constant-time change to 

each element of the set - the entire transformation requires O(n) time.

Thus if we can find an efficient algorithm for Y, we will also have an efficient 

algorithm for X.

Our term for this kind of transformation is reduction.  We say X reduces to Y.

 This is confusing to many people because an intuitive interpretation of the 

word "reduce" often suggests "simplify".  Here, the reduction goes from the 

"easier" problem (X) to the "harder" or "more general" problem (Y).  It is useful 

to remind ourselves exactly what we mean by X reduces to Y:  if we could solve

Y, then we could also solve X.

Reduction is NOT about:

    - showing that there is an efficient algorithm for Y

    - showing that there is an efficient algorithm for X

    - showing that X is difficult or easy

    - showing that Y is difficult or easy

Reduction IS about:

    - showing that IF we could solve Y in polynomial time, THEN we could also 

solve X in polynomial time by transforming instances of X into instances of Y.



The standard notation for reduction is  .   

For our problems above, we write X  Y

The next step in the argument is to observe that reduction is transitive.  If X  Y,

and Y  Z, then X  Z - the transformation now takes two steps, but it is still 

polynomial-time, and (this is crucial) it is still answer-preserving.

Now we can imagine long chains of problems linked by reduction.  The first 

problems in each chain would be quite easy, and as we move along the chains 

the problems get harder and harder.  The problems we are searching for, the 

most difficult problems in NP, will be at the far ends of the chains.

In class the question was asked “Do these chains go on forever, or do they reach 

an end?”   My (very satisfying) answer was “Both.  The chains do go on forever, 

and they also reach an end.”  What I mean by this is that there is always another

problem that we can reduce to, but the difficulty of these problems (as long as we

stay in the class NP) reaches a maximum level and stays there.

Finally, we can get back to Cook and Levin.  To describe their amazing 

discovery and its importance, we need one or two more definitions.

SAT:  SAT is a problem in NP, defined as follows:  Let E be a Boolean expression

with n literals (a literal is just a Boolean variable, possibly negated).  Each literal 

may occur more than once in E.  Is there a way to assign True and False to the 

literals in E so that E is true?

Example:  Let      If we let  and , E 

evaluates to True, so E is satisfiable.

Example:  Let .  E is not satisfiable ... you can verify

this for yourself.



And now at last the jewel in the crown – the most important result in the history

of the study of algorithms (which is the most important part of computer 

science ...  but maybe I’m biased):

The Cook-Levin Theorem:

    Let X be any problem in NP.  Then X reduces to SAT.

This means if we could solve SAT in polynomial time then we could solve every 

problem in NP in polynomial time too.  That would have a couple of interesting 

implications.  For one thing, it would mean that all of the decision problems that

have defeated everyone who has attempted to find good algorithms for them for

the last 50 years, actually do have polynomial time algorithms.  For another 

thing, it would mean P = NP ... which means that our normal, real-world 

computers have just as much power as magical, guess-the-right-answer-every-

time Non-deterministic computers.  Most people don’t believe either of these 

things ... and so most people believe that SAT simply cannot be solved in 

polynomial time.

Well, so what?  The number of times in a day I am confronted with a Boolean 

expression and asked to determine if it is satisfiable ... is small.  I can probably 

live the rest of my life without needing to solve an instance of this problem.

But SAT is not alone!  Immediately after Cook and Levin opened the gate by 

proving that all problems in NP reduce to SAT, other researchers (notably, Karp)

used the Cook-Levin Theorem to prove that there are infinitely many other 

problems that have the same property ... and many of those problems are highly

practical, real-world, every day problems.

Definition:  

A problem X in NP is called NP-Complete if all problems in NP reduce to X        

(ie if finding a polynomial-time algorithm for X would show P = NP).



At this point we have only identified one NP-Complete problem: SAT.  It is time 

to look at how we can find others.  Fortunately, the mechanism for showing that

a problem is NP-Complete is something we already know: reduction.

Now we can finally get to the practical use of all this theorizing about magical 

computers, polynomial-time transformations, and so on.  When we are 

presented with a new problem to be solved, our first task as algorithm designers

must be to ask “Will we ever be able to find a good (ie polynomial-time) 

algorithm for this problem?”  If the problem is NP-Complete, the answer 

(realistically) is No ... because finding such an algorithm would prove P = NP, 

and we don’t believe that is true.  So if our new problem is NP-Complete, we 

should not waste our time looking for a polynomial-time algorithm to solve it.  

We have to choose between finding a fast algorithm that sometimes gives the 

wrong answer, or an algorithm that always gives the right answer but 

sometimes (or always) takes a very long time.

Determining that a new problem is NP-Complete can save us from wasting a 

ton of time searching for a polynomial-time algorithm.   That’s the practical 

value of this excursion into complexity theory.

So if we are given problem X, how do we prove X is NP-Complete?  We could 

do what Cook and Levin did: work out a complete template for reducing every 

problem in NP to X in polynomial time ... but that's a lot of work.  There's a 

much easier way.  All we need to do is 

1. Show X is in NP - this is usually the easy part

2. Find some known NP-Complete problem Y for which we can show Y  

X ... and then we are done!

Why does this suffice?   Because Y is NP-Complete, we already know every 

problem in NP reduces to Y.  Now we have shown Y reduces to X.  Therefore by

transitivity, every problem in NP reduces to X ... and that is equivalent to saying

X is NP-Complete.



As an example of this ...

Let’s look at two very popular problems ... 

Partition:  Given a set S of n positive integers, can S be partitioned (ie divided) 

into two subsets  and   with the sum of the elements of  equal to the sum 

of the elements of ?

Note that Partition is in NP.

Subset Sum:  Given a set S of positive integers and a positive integer k, does S 

contain a subset that sums to k?

Subset Sum is also in NP.

Suppose we know that Partition is NP-Complete  (in fact, it is!).  We can use 

this knowledge to show that Subset Sum is also NP-Complete.   The reduction 

from Partition to Subset Sum is trivial because Subset Sum is a generalization of 

Partition.  In Partition we are looking for a subset that sums to a specific value: 

half the total sum of S.  If such a subset exists, the answer to Partition for this set 

S is “Yes”.  But to transform this to an instance of Subset Sum, all we need to do 

is let the target value k = half the total sum of S.   (This is exactly the same 

approach as we  used to reduce the “Does a set contain the value 4?” problem to 

the “Does a set contain the value k?” problem.)  This reduction takes constant 

time and it is answer-preserving ... so we know Partition reduces to Subset Sum.

And from that we know Subset Sum is also NP-Complete.  Make sure you see 

why we know this!

This very simple proof that Subset Sum is NP-Complete (based on the assertion 

that Partition is NP-Complete) illustrates a very powerful truth: if a special case 

of a problem is known to be NP-Complete, then the general case is also NP-

Complete.  



Be careful with this.  If we know that the general case of a problem is NP-

Complete, it is not safe to assume that all special cases are also NP-Complete.

For example, consider this (ridiculously simple) problem:   Let E be a Boolean 

expression containing no more than four literals.  Can E be satisfied?  This is 

obviously a special case of the SAT problem, and it is equally obvious that 

instances of this problem can be solved by trying all combinations of True and 

False for the literals – there can be no more than 16 combinations to try.  

Here we know that the general case (SAT) is NP-Complete, but the special case 

we just defined is not NP-Complete.

However, in the case of Partition and Subset Sum, we can show that the general 

case reduces to the special case.

This is what we will do on 190122.


